If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+32x-380=0
a = 1; b = 32; c = -380;
Δ = b2-4ac
Δ = 322-4·1·(-380)
Δ = 2544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2544}=\sqrt{16*159}=\sqrt{16}*\sqrt{159}=4\sqrt{159}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-4\sqrt{159}}{2*1}=\frac{-32-4\sqrt{159}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+4\sqrt{159}}{2*1}=\frac{-32+4\sqrt{159}}{2} $
| 4+a=9.1 | | -15-19n=-19n-15 | | 2(3b+9)=(3(27+b) | | x+58=90x= | | 10+11x+19=15+18x | | 3+3x-x=x+2=3x+4 | | 3/4x-7=1/4x+8 | | 2y+1=5y-3 | | 2x+4(3-2x)=3(2x+2/6+4 | | -30=5x(+1) | | -31+m+19m=5+14m | | 12.5x+4=7x+37 | | 1+3X-x=x-5 | | 360=(15x-10)+(15x+14)+(11x+10)+(9x-4) | | 4.6x-3=3.6x | | 4(4+4x=96 | | -17-10a=-37+5a+5a | | 1+7x=0 | | -30=-16+n | | 2+4=2x | | 9+6x=5x+19 | | x/9-9=-6 | | d+3/4=12 | | x-19-4x=35-6x | | (2x+9)+(6x+2)+(7x+4)=180 | | 127=3(1=5v)+4 | | 12x-6=52 | | 10+0,166666667x=0,5x+6 | | 6(3n-)=2(5n+5) | | 0,25+3x=18-17 | | 15v+34=-10-11v | | 3|4x=9 |